
 July 3rd, 2018
 Simulated Watercolor Painting with Smooth Ink Flow
 1

A Simulated Watercolor Painting
with Smooth Ink Flow

Michael Fotheringham Kristal Fotheringham

JixiPix Software, mikef@jixipix.com JixiPix Software, kristal@jixipix.com

Abstract – We are proposing a new algorithm based on a
previous work at JixiPix Software, US patent numbered
US10,008,011 titled “Methods for creating a simulated
watercolor-painted image from a source image”, [7]
Effective Wet-in-Wet Flow Synthesis for Ink Diffusion,
and [6] Expressive Rendering with Watercolor.

PROPOSED IMPLEMENTATION

We are proposing a new algorithm based off the original
Balestrieri et al.[1] while incorporating new techniques
from [5][6][7]. The original algorithm processed most steps
based on the created “edge buffer” with added noise. This
added noise acted as a wobbling effect [5] for the abstracted
areas as well as a bleed when smoothing the image.
Secondary was the highlighted edge delineation map used to
create the ‘white areas’ that artists sometimes leave in
between colors . These two areas were the main difference
between [6] Expressive Rendering with Watercolor and [7]
Effective wet-in-wet flow synthesis for Ink Diffusion
however the original authors saw the regions becoming
separated as a negative whereas [1] decided to accentuate it.
[7] took the implementation one step further and
implemented a wet-in-wet flow synthesis based on ink
diffusion rather than a ‘random jitter’.

IMAGE PREPARATION

Saturate original image. Watercolor paintings are usually
very colorful and doing a saturate process gets us closer to a
realistic painting. This implementation is as simple as
dot(rgb, vec3(.2125, .7154, .0721)). [3] OpenGL Shading
Language.

TEXTURE CREATION

Create a ‘diffuse noise’ image using techniques as described
in [5]4.1.2, a ‘pigment texture’ based on high-frequency
noise and combine with turbulent texture, and a ‘paper
grain’ which can be a scanned image of a real watercolor
paper.

IMAGE ABSTRACTION

Abstract the image using a graph cut image segmentation
[4] or similar abstraction process. The goal is just to abstract
the image and there are numerous techniques to accomplish
this goal. Combine the small regions and use a means
average of the regions to find average color inside each of
the regions. Figure 1.

Find the most prominent colors in the original image based
on pre-defined number of shades and group regions in the
segmented image into similar colors. With a Watercolor
painting there is a limited number of colors that an artist will
use to paint with. After completion of this step there should
be the same number of sets of regions as shades, i.e. there is
a color associated with each set of regions. The regions do
not necessarily need to be joined. The output of this stage is
nothing more than an abstracted image with a list of colors
used on the abstracted image. This list of colors will be used
during the edge and rendering phase. Sort this color list
from light to dark using a perceived value means (i.e. blue
can be perceived as being as dark as black and red and not
necessarily light to dark, in fact the perceived output looks
closer to a real world watercolor painting when done this
way). This version varies from [1] in that it describes a light
to dark rendering process whereas we put emphasis on
perceived color and can adjust our conversion on the fly. By
default the equation is simply Pc = 1 – (r*.241 + g*.691 +
b*.068). Values with a darker value (higher Pc) will be
rendered last and have less emphasis in the final painting.

Figure 1 – Abstracted Image

 July 3rd, 2018
 Simulated Watercolor Painting with Smooth Ink Flow
 2

OUTLINE

Next create an outline of this abstracted image using any of
the technologies to find an edge, sobel, difference of
gaussian, adaptive threshold, etc. In our example we use a
difference of gaussian. Since we have already performed our
abstraction we can use the abstraction layer as our basis for
the outline which will not get small details typically
associated with edge finding code. This new ‘edge’ layer
will be used for a few processes including edge delineation
and hard edges. The ‘edge’ layer can be a 1 channel image.
Make a copy of the ‘edge’ layer and label it ‘outline’ layer
for use later. This ‘outline’ layer will be used to make the
‘edge darkening’ at the end of the render phase.

Wobble the. ‘edge’ layer created above using techniques
similar to [5] and [6]. This step does require a paper texture
to be used as the wobble structure, however we have a much
simpler approach in that you can perform a simple diffuse of
the edge then apply a morphological filter [8]. Future
reference to this technique will be just called ‘wobble’.
There are many approaches that can be taken to wobble the
image, diffuse/morphological is just one example. The
outcome is a roughened edge that is similar to paper fibers
in a typical watercolor paintings. Figure 2

Figure 2 – outline generated from abstracted image

CONTROL IMAGE CREATION

The ‘region’ adjusting stage now begins as well as the
creation of the ‘control’ and ‘mark’ image used later during
the rendering phase. Go through each abstracted region and
‘wobble’ said region. Wherever the ‘wobbled’ region is
active and where the ‘edge’ layer is NOT active you will
now put a number corresponding to the color list for the
current region into the ‘mark’ image and the Pc into the
‘control’ image. Repeat this for all regions.

Add the diffuse noise image to the ‘control’ image. This will
be used in the propagation render phase to ‘bleed’ the
regions together. Figure 3. During the rendering phase we
are using a form of a bilateral filter that will not cross edge

boundaries. By adding in a little noise to this control image
we are giving the bilateral filter the ability to go outside of
those strict edge boundaries.

You will notice in figure 3 that the mark image is very dark.
This is because this image stores the index to the region in
the color list that is 0 based, simply a way to optimize the
rendering phase.

(a) Control Image (b) Mark Image
Figure 3

RENDER PHASE

Create a ‘paint’ image that will be used to store the
rendering and initialize it to white. For each region in the
‘mark’ image render into the ‘paint’ image using a darken
blend mode while using an opacity on a sliding scale based
on the Pc with the most prominent colors getting a max of
50% transparency and lighter Pc getting a max of 80%
transparency. The transparency gives a perception of
transparent ink when applied over top of the previous
rendered layers. After each compositing mode run a simple
cross bilateral filter[10][11] on the ‘paint’ image with the
‘control’ image used for the contours or range function and
the sigma range varying based on the Pc with sigma range
growing for lighter colors which will give the perception of
smoothing/growing ink on lighter colors.

Number of passes and/or distance of spatial kernel will give
the perception of more or less ‘liquid’ being applied to the
‘paint’ image. However it is important to note that in a
regular bilateral implementation there is a point of
diminishing returns and more ‘cartoon’ like side-effects
associated with more passes rather than a larger spatial
kernel parameter. Figure 4

After completion of all rendering phases the ‘edge
darkening’ [6] is applied. For each color in the color list
render the region into the ‘paint’ image using a ‘darken’
blend mode only where the ‘control’ image and ‘outline’
image are active. This will render in the outline but only
where the ‘wobbled’ ‘control’ region is at which gives the
perception of un-even darkened edges. Figure 4

Wp =
q∈S
∑ Gσ s p − q()Gσ r Fp −Fq()

 July 3rd, 2018
 Simulated Watercolor Painting with Smooth Ink Flow
 3

 (a) (b) (c) (d)
Figure 4: Rendering pipeline. (a) rendering 10 colors
complete. (b) rendering 18 colors complete. (c) rendering 24
colors complete. (d) edge darkening added to final image.

TEXTURE COMPOSITION

Composite ‘paint’ buffer with the ‘pigment texture’ using a
Burn Color Mode. Composite the ‘paint’ image with the
‘paper grain’ using Overlay Color Mode. Figure 5(a-d)

 July 3rd, 2018
 Simulated Watercolor Painting with Smooth Ink Flow
 4

FUTURE IDEAS

The ideas behind this proposal adds onto previous work
[1][5][6][7] while still retaining most of the previous work
benefits and issues. Issues with [1] is mainly that there is
limited control of what areas become smooth however the
fluid nature of the algorithm is very pleasing. Issues with
[5][6][7] is the lack of fluid smoothing and blending with
[7] becoming the closest. There is lots of room for future
improvement while keeping the nearly exact algorithm
intact.

We could provide color correction/augmentation before or
after the algorithm. Changing color by using a LUT, overlay
of real painting colors, contrast etc. would also change the
location of the abstraction and ultimately the regions and
how they are rendered which would ultimately cause the
smoothing effect to happen sooner in the rendering phase on
a given area. Adding LUT, overlay, contrast, etc. afterwards
to leave those color changes more intact and that a LUT
change would be more gradual and smoother than pre-
abstraction.

Along these same lines you could convert the pre-
abstraction to duo-tone, tri-tones, monotones, etc. Again
before or after pre-abstraction would drastically change the
way the painting processes.

Other ideas include varying the perceived calculation and
base it on real world instances. This could include rendering
a scene based on a Chinese ink paintings, rendering a sky
and giving more importance to light or blue colors.

Other possibilities include not combining similar colored
regions and use a salient technique to define what regions
should be rendered first. This would require adjusting the
‘perceived’ system for rendering order but not necessarily
transparency by having 2 different functions (although it
could easily be optimized to handle both). Salient
techniques are quite common and picking the right option
based on usage. One of those is described by Min-Ming
Cheng, et.al [9].

One could also remove the ‘diffuse’ noise image from the
‘control’ image and use it during the rendering phase. This
affords numerous advantages. One of which is the ability to
offset your ‘diffuse’ texture for every pass or every color
during the bilateral phase. This will give more of a
perception of ink flow, especially the further out the liquid
progresses. This would also mitigate the issues with
multiple passes on a bilateral filter ‘cartooning’ the image.

Varying where the ‘diffuse’ noise is added into the
rendering pipeline also varies the overall look of the bleed
and wetness in the image. Adding noise to the original
image before abstraction gives more disjointed areas, while

adding noise to the regions will give more of a rougher
painting edges.

Adjust the Pc and transparency during the render phase to
take into account how many regions and unique colors there
are in the image. This will keep the ‘wetness’ of the painting
nearly identical across more shades or more complex
regions.

REFERENCES

[1] Methods for creating a simulated watercolor-painted image from a
source image. US 10,008, 011 – John Balestrieri – 11/25/2015

[2] Provisional Patent Application 62,084,790 – John Balestrieri –
11/26/2014

[3] OpenGL Shading Language 3rd Edition – Randi J. Rost, Bill Licea-
Kane

[4] Efficient Graph-Based Image Segmentation – Pedro F. Felzenszwalb,
Daniel P. Huttenlocher

[5] Interactive Watercolor rendering with temporal coherence and
abstraction – Adrien Bousseau, Matt Kaplan, Joell Thollot, Francois
X. Sillion – 2006

[6] Expressive Rendering with Watercolor – Patrick J. Doran, John
Hughes – 2010

[7] Effective Wet-in-Wet Flow Synthesis for Ink Diffusion – Ren-Jie
Want, Chung-Ming Wang – 2010

[8] www.mif.vu.it/atpazinimas/dip/FIP/fip-Morpholo.html

[9] Global Contrast based Salient Region Detection – Ming-Ming Cheng,
Guo-Xin Zhang, Niloy J. Mitra, Xiaolei Huang, Shi-Min Hu – 2011

[10] Digital Photography with Flash and No-Flash Image Pairs – Georg
Petschnigg, Maneesh Agrawala, Hugues Hoppe - 2004

[11] Flash Photography Enhancement via Intrinsic Relighting – Elmar
Eisemann, Fredo Durand - 2004

AUTHOR INFORMATION

Michael Fotheringham is currently an effect engineer for
JixiPix Software. Michael has a long history of doing
special effect work dating back to 1987 and has worked for
many pioneering effect and 3D software companies.

Kristal Fotheringham is currently an artist for JixiPix
Software. Kristal has a long history in the art field and has
been artineering work in many fields from advertising
agencies to fine arts, to interior design, to special effects.
Kristal is not directly an effect engineer but works closely
with the engineering team when designing and
implementing algorithms and processes.

